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The classical theory of Brownian motion applies to suspensions which are 
so dilute that each particle is effectively alone in infinite fluid. We consider 
here the modifications to the theory that are needed when rigid spherical particles 
are close enough to interact hydrodynamically. It is first shown that Brownian 
motion is a diffusion process of the conventional kind provided that the particle 
configuration does not change significantly during a viscous relaxation time. 
The original argument due to Einstein, which invokes an equilibrium situation, 
is generalized to show that the particle flux in probability space due to Brownian 
motion is the same as that which would be produced by the application of a 
certain ‘thermodynamic’ force to each particle. We then use this prescription 
to deduce the Brownian diffusivities in two -different types of situation. The 
first concerns a dilute homogeneous suspension which is being deformed, and the 
relative translational diffusivity of two rigid spherical particles with a given 
separation is calculated from the properties of the low-Reynolds-number flow 
due to two spheres moving under equal and opposite forces. The second concerns 
a suspension in which there is a gradient of concentration of particles. The 
thermodynamic force on each particle in this case is shown to be equal to the 
gradient of the chemical potential of the particles, which brings considerations 
of the multi-particle excluded volume into the problem. Determination of the 
particle flux due to the action of this force is equivalent to determination of the 
sedimentation velocity of particles falling through fluid under gravity, for which 
a theoretical result correct to the first order in volume fraction of the particles is 
available, The diffusivity of the particles is found to increase slowly as the con- 
centration rises from zero. These results are generalized to the case of a (dilute) 
inhomogeneous suspension of several different species of spherical particle, and 
expressions are obtained for the diagonal and off-diagonal elements of the 
diffusivity matrix. Numerical values of all the relevant hydrodynamic functions 
are given for the case of spheres of uniform size. 

1. Introduction 
The classical theory of Brownian diffusion developed by Einstein (1905, 1906) 

and many later workers is concerned with random migration of isolated colloidal 
particles or large solute molecules due to interaction with molecules of the sus- 
pending fluid. The results of this theory are applicable to very dilute solutions or 
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suspensions in which the particles on average are far apart from each other. When 
the suspension is not extremely dilute, the interaction of particles will affect 
their migration. We shall consider here the effects of two basic types of inter- 
action, both of which depend on the ratio of the particle size to the average par- 
ticle spacing. Both the particles and the suspending fluid will be assumed to be 
incompressible, so that there is no change of volume accompanying diffusion. We 
shall assume the particles to be large enough for the suspending fluid to be 
regarded as a continuum. 

One type of interaction, that due to inter-particle forces, has been studied 
intensively by physical chemists, and the dependence of the thermodynamic 
quantities describing the state of a statistically homogeneous suspension or 
solution on the concentration of particles is known, in the form of ‘virial expan- 
sions ’, for various functional forms of the interaction potential. For simplicity 
we shall assume the particles to be rigid spheres with interparticle forces which 
have the purely geometrical effect of preventing particles from overlapping, but 
it should be possible to generalize the results to suit other forms of the inter- 
action potential. The other type of interaction to be considered is hydrodynamic, 
and results from the fact that movement of one particle through the fluid gener- 
ates a velocity field which affects the motion of neighbouring particles. The first 
type of interaction is relevant to systems in equilibrium, and both are relevant to 
diffusive transport of particles in non-equilibrium systems. 

Other papers published recently which have been concerned with the Brownian 
diffusion of particles with hydrodynamic interaction are by Deutch & Oppen- 
heim (1971), Murphy & Aguirre (1972), and Aguirre & Murphy (1973). The 
investigations by these two groups of workers were based on consideration of the 
dynamics of particles moving under the action of the fluctuating force exerted 
by the surrounding medium. Here we use an alternative and much simpler 
method for the statistical mechanics part of the investigation which is a general- 
ization of the argument used by Einstein and which gives the asymptotic or 
long-time statistical properties of the displacement of particles in terms of the 
thermal energy of the medium. The result is an indirect but general prescription of 
multi-particle Brownian diffusive flux which tells us that the flux is the same as 
if certain steady forces were acting on the particles. The calculation of the diffusive 
flux in particular cases is then a hydrodynamic problem involving two or more 
particles moving under the action of given forces. This kind of hydrodynamic 
problem also arises in the sedimentation of particles, and some recent progress 
with the calculation of interaction effects in the sedimentation of particles in a 
dilute suspension is used in $ 6  to determine the rate at  whioh particles diffuse 
down a concentration gradient. 

As a preliminary we show in $2 that multi-particle displacements due to Brown- 
ian motion have statistics of Gaussian form and that the joint probability 
density functions describing particle displacements satisfy a diffusion equation 
with a diffusivity which rapidly approaches a constant value. 
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2. Multi-particle Brownian motion as a diffusion process 
Suppose that the position of the centre of volume of a particle subject to 

Brownian motion is given a t  some initial instant, and that the displacement and 
velocity of the centre of volume after a time t are denoted by X ( t )  and v ( t ) ,  where 

X(t) = v(t/)dt‘. so” 
In  circumstances such that the velocity v is a stationary random function of time, 
it follows from the central limit theorem that the probability distribution of X 
tends to the normal or Gaussian form as t -+ 00. We may see this formally by 
dividing the range of integration t into a number of equal intervals At, whence 
X(t) becomes the sum of a series of terms with equal means and equal variances. 
If now we choose At to be sufficiently large for the coefficient of correlation of 
two adjacent terms in the series to be small, and then let tlAt -+ 00, the conditions 
for application of the central limit theorem are satisfied. 

A Gaussian form for the probability density function P ( X )  satisfies the diffu- 
sion equation 

_ -  aP at - V.(kd*).VP), 

and the tensor coefficient 

is termed the diffusivity, where R( 6 )  = ( v ( t )  v ( t  + 0) and the angle brackets 
denote an ensemble average. Provided that the integral in (2.2) converges as 
t + 00, the diffusivity attains the asymptotic value 

after a time of order r, where 

and IRI denotes the trace of R. The asymptotic value (2.3) is usually the only 
relevant value of the diffusivity in practical diffusion problems since T is a very 
small time. We note that since the principle of equipartition of energy gives 

IR(O)I = 3kT/m 

for a particle of mass m in an equilibrium situation, the relaxation time r is equal 
to mlD1/3kT. 

These familiar results hold when the particle velocity v is a stationary random 
function o f t .  That is certainly true if the particle is free from interactions with 
other particles and if any external force acting on it is constant. But when there 
are interactions between particles which depend on the relative positions of the 
particles, the statistical properties of the velocity of one particle might change 
slowly with time simply as a consequence of change of the spatial configuration 
of particles. For instance, two particles which are very close have an inhibited 
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relative Brownian motion and respond to thermal forces with approximately 
the mass and hydrodynamic resistance of a rigidly joined pair, whereas after 
some time when the particles have wandered far apart each has the Brownian 
motion of an isolated particle. It is conceivable that a theory which takes full 
account of the effect of change of the particle configuration on the Brownian 
movement could be devised, but here we shall evade the difficulties by supposing 
that the change in the particle configuration during the relaxation time T is 
negligibly small. In  these circumstances the velocities of a number of interacting 
particles are approximately stationary random functions of time over a time 
interval of order r (which if necessary is redefined as the largest of any different 
values obtained for the various particles); and a simple generalization of the 
argument above to multi-particle statistics shows that the joint probability 
distribution of the displacement vectors of N interacting particles tends to the 
Gaussian form and that the corresponding tensor diffusion coefficients of the form 

where i a n d j  refer to two different particles, tend to constant values like (2 .3)  
which now are functions of the particle configuration. 

The essence of our assumption is that the particle configuration is effectively 
constant during the time T that characterizes the diffusion process. If for esti- 
mation purposes we suppose that each particle migrates with the scalar diffusivity 
rlcT/m (and that any other motion-producing agency changes the particle con- 
figuration more slowly), the change in the distance between two particles in 
time T is of order 7(lcT/m)*, or (mkT)B/Snya in the case of rigid spheres of radius 
a where y is the fluid viscosity. Expressed as a fraction of a particle radius, this 
relative displacement of two spheres in time 7 is 

( m k T ) ~ / 6 n q a 2 ,  (2 .6 )  

which is less than 10-3 in the case of spheres of radius 10-3 mm in water at normal 
temperature and so is normally negligible. If two particles are very close together, 
and E is the minimum distance between the two surfaces, it  would be more logical 
to compare the relative displacement of the two particles during time T with E ;  but 
then the relative diffusivity differs from that just assumed by a factor of order 
€/a ( as will be seen later), and (2 .6 )  is again an estimate of the change in the dis- 
tance between the two centres in time r expressed as a fraction of the relevant 
configuration length which now is 8. It appears that our assumption of a constant 
configuration during the time interval T that characterizes the diffusion process 
will be accurate in common circumstances. 

Both Deutch & Oppenheim (1971) and Murphy & Aguirre (1972) also find 
it necessary, in their different treatments of the problem, to assume that the 
change in the particle configuration during the relaxation time r is small. 
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3. A formal prescription for the diffusive flux in a multi-particle 
system 

The classical argument for  the diffusion of independent partictes 

The argument used by Einstein (1905) to determine the Brownian diffusivity 
of an isolated particle suspended in fluid is ingenious and simple, and involves an 
appeal to a hypothetical equilibrium system. Einstein considered a situation in 
which a steady external force derivable from a potential @(x) acts on the particle 
and drives it toward an impermeable boundary in opposition to random move- 
ment away from the boundary due to thermal agitation. In  this state of thermo- 
dynamic equilibrium involving the suspended particle and the fluid molecules 
at temperature T, the probability density function for the position of the particle 
is given by the Boltzman distribution as 

where Po is a constant determined by the normalization condition /P(x) dx = 1. 
Alternatively, we can follow Einstein (1905) more closelyt and use the fact that, 
in a system with variable composition, uniformity of the chemical potential of 
each component (the components in this case being the particle and the suspend- 
ing fluid), as well as of the temperature, is a necessary condition for thermo- 
dynamic equilibrium (Landau & Lifschitz 1968, 9 86). In  a dilute suspension of 
non-interacting particles with number density P(x) the local chemical potential 
of the particles in the presence of the applied force is approximately 

kT log P + @ + const., 
whence (3.1) is recovered. 

Now in this equilibrium system the mean particle flux due to movement under 
the action of the applied force balances that due to Brownian diffusion down the 
probability gradient. Provided the particle is so small that the fluid flow about it 
is governed by the linear low-Reynolds-number equation of motion, the velocity 
imparted to the particle by a steady force F is b . F, where the second-rank tensor 
b is the particle mobility. Hence the local flux balance in the equilibrium state is 
represented by 

Substitution for P from (3.1) then shows that the diffusivity due to Brownian 
motion has the uniform value 

For a rigid spherical particle of radius a the mobility tensor is isotropic and may 
be obtained from the Stokes resistance law, giving the classical formula 

P(x) = Po exp ( - @/kT) ,  (3.1) 

-Pb.V@-D.VP = 0. (3.2) 

D = kTb. (3.3) 

where I is the unit isotropic tensor and 7 is the viscosity of the suspending fluid. 
This expression for D has been derived for the postulated equilibrium situation; 

but since the Brownian agitation and the steady appIied force lead to independent 
and superposable movements of the particle in a linear low-Reynolds-number 

t Although not identically; Einstein’s argument was in terms of the osmotic pressure 
of the suspension, which is related to the chemical potentials of the components. 
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system, the expression for the diffusive flux is equally valid in the absence of the 
applied force. And in a dilute suspension containing many identical non-inter- 
acting particles, the particles diffuse independently and the diffusive particle 
flux density is - D . V n ,  where n is the local mean number density. 

It should be noted for future reference that the particle flux due to Brownian 
migration is the same here as if a certain steady force acted on the particles 
(this force being equal and opposite to the external force -V@ that, in the 
equilibrium situation, produces a convective flux which balances the diffusive 
flux); that is, in view of (3.1), the same as if a steady force 

(3.5) 
acted on the particle. It is of course not to be supposed that the interaction of a 
particle with the molecules of the surrounding medium is literally equivalent to 
the exertion of a steady force on the particle. When the probability density of the 
particle position is non-uniform, the mean Brownian velocity of a particle, con- 
ditional upon it being near a point x, is non-zero simply as a consequence of the 
fact that the particle is more likely to have come from a direction in which the 
probability density increases than from one in which it decreases; and it is this 
bias in the statistics of particle velocities a t  x (which is quite consistent with zero 
mean of the Brownian velocity of a given particle in the absence of an applied 
force) that is equivalent, so far as its effect on the diffusive flux is concerned, to 
the action of the steady force (3.5) on the particle. The equivalent steady force 
(3.5) is sometimes termed the thermodynamic force. 

This classical argument has been reproduced because it is the basis of our 
investigation of the effect of particle interaction. We shall show that, even when 
the suspension is not so dilute that particles may be regarded as independent, the 
diffusive flux is the same as that which would be generated by the application of 
a certain steady force to the particles. The way in which we shall do this depends 
on whether the suspension is homogeneous or inhomogeneous. In  the case of a 
statistically homogeneous suspension the problem at issue is the relative diffusion 
of groups of interacting particles (on account of its bearing on the rheological 
properties of dilute suspensions). And in the case of an inhomogeneous suspension 
there is the additional and important possibility of diffusive transport of par- 
ticles in space, Both cases may be treated by suitable generalizations of the 
Einstein argument. 

F = - kTV log P ( x )  

Relative diffusion in a homogeneous suspension 

Consider a group of m particles in a homogeneous suspension (where rn > 1 
but is not large) which are within a few particle radii of each other and so are 
close enough to interact hydrodynamically. The chance of another particle being 
close to the group is small, in a dilute suspension, and we may therefore regard 
the group as isolated from other particles. We now hypothesize an equilibrium 
situation in which a steady external interactive force with mutual potential 
energy @(x17 . . . , xm) is applied to the particles of the group (say by joining par- 
ticles with elastic strings), where @ depends only on the relative position vectors 
x2-x1, :.., xm-xl and not on the location of the group in space. There is in 
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addition the interactive force with mutual potential energy U(x,, . . . , x,) which 
in the case of our hard spheres is infinite if any two particles overlap and zero 
otherwise. Since the group of particles is independent of other particles in the 
suspension we again have the Boltzmann form 

P(x,, ..., x,) = P,exp (-Y) 
for the joint probability distribution of the position vectors of the m particles. 

The diffusive flux of one particle relative to others in this equilibrium situation 
is equal and opposite to the convective flux produced by the steady applied force. 
Provided the two fluxes are independent, as may be assumed in view of linearity 
of the hydrodynamic equations for the motion due to particles acted on by 
external forces, it follows that when the external force is suddenly removed there 
is a flux due to diffusion which is the same as if each particle were acted on by 
a steady force equal and opposite to that derived from @, where @ is given by 
(3.6), that is, the same as if the Ic particle were acted on by the steady force 

(3.7) 
a log P(x,, . . . , x,) 

ax, 
F k  = -kT (k = 1, ..., m). 

(Values of xk such that the k particle is touching another particle must be ex- 
cludedsince P(x,, . . . , x,) may be discontinuous there.) Thus when the probability 
density function for the particle configuration is known, the relative diffusive flux 
can be calculated. Such a calculation involves a consideration of the hydrodynamic 
resistance to relative motion of neighbouring particles under the action of the 
forces (3.7), and we take it up in $ 5  for the case of a group of two particles. 

Gradient diffusion in un inhomogeneous suspension 

We consider now the diffusive flux of particles down a spatial gradient of con- 
centration. Suppose that the particles are identical, and that the mean number 
density is n(x) in some hypothetical equilibrium situation in which the steady 
external force - V@(x) acts on each particle. We seek the relation between V @  
and V n  in this equilibrium system, since this will give us the effective or thermo- 
dynamic force on a particle, which balances the external force - V@, in terms of 
the concentration gradient V n .  The Boltzmann distribution for the positions of a 
large number of particles in a closed volume of suspension does not seem to be 
suitable for this purpose, and we use instead the alternative version of the 
Einstein argument based on the fact that in equilibrium both the chemical poten- 
tial of the particles and the temperature must be uniform. 

Those who are more at home in fluid mechanics than thermodynamics may 
welcome the reminder that for a statistically homogeneous system containing 
N particles in suspension the chemical potential per particle p is defined as the 
derivative, with respect to N ,  of one of the thermodynamic energy functions, the 
most useful for the present purpose being 

P = (aG/aN),,,,., (3.8) 
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where No denotes the number of molecules of fluid in the system and the Gibbs 
free energy of the system is defined, with conventional notation, as 

in the absence of any external forces. G is a homogeneous function of the first 
order in N and No, and so p is a function of the ratio N/No, or, more conveniently, 
of the particle number density 

G = E+PV-TX 

n = N/(N,v ,+Nv) ,  (3.9) 

where and vo are the volumes of a particle and a fluid molecule respectively; 
p is also a function of p and T. If now an external force with potential energy 
@ per particle acts, there is an additional term N @  in the expression for the Gibbs 
free energy, and the chemical potential per particle is 

ru(n,p, T) + @, (3.10) 

wherep(n, p ,  T) is the function of n ,p  and T that represents the chemical potential 
in the absence of the external force. 

The above quantities have been defined for a homogeneous system, and in the 
case of a statistically inhomogeneous system they may be defined as local 
quantities, with n, p and @ being functions of position. The requirement of 
uniformity of the particle chemical potential in equilibrium then shows that 
the external force -V@ applied to a particle is balanced (statistically) by a 
‘thermodynamic ’ force 

which evidently represents the effect of diffusion. And since the Brownian motion 
of a particle and that due to the external force - V@ are superposable, the dif- 
fusive flux will be specified by this thermodynamic force in the absence of the 
external force, that is, in a non-equilibrium situation. Bearing in mind the 
definition of the chemical potential as the change in the Gibbs free energy due to 
the introduction of an additional particle a t  constant pressure and temperature, 
it is understandable that when the chemical potential varies with position the 
diffusive driving force on a particle should be of the form - Vp, The idea of the 
gradient of chemical potential as a diffusive driving force on particles has been 
familiar to physical chemists for many years, but it appears to have played little 
part in theoretical studies of Brownian diffusion hitherto. 

Note that, in the hypothetical equilibrium system with an external force 
acting on the particles, both n and p vary with position, the variation of the 
latter being given by the force-balance relation 

Or, = -nV@; (3.11) 
and so in this case 

F = - Vp(n,p, T) 

But, when diffusion is taking place in the absence of an external force acting on 
either the particles or the suspending fluid, both p and T are uniform in the 
suspension and the thermodynamic driving force on a particle becomes 

F =  -(g) Vn. 
P, T 

(3.12) 
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There is a corresponding thermodynamic force F, = -Vp, on each fluid 
molecule, where po(n, p ,  T )  is the chemical potential per fluid molecule. In  the 
hypothetical equilibrium situation in which an external force acts only on the 
particles, Vp,  is zero, as may be seen explicitly by use of the thermodynanic 

&o ap relations 
n -+n-=O and 

O an an f f l .  T 

where no is the (local) number density of the fluid molecules. And when diffusion 
is taking place in the absence of external forces, p and T are uniform and 

(3.13) 

the resultant thermodynamic force on the particles and fluid molecules in unit 
volume then being zero as expected. The existence of a diffusive driving force on 
the fluid molecules as well as on the particles has implications for the relative 
diffusive flux of particles and fluid. For the moment we simply note that, since 
a uniform body force - Fo/vo per unit volume acting on particles and fluid alike 
produces no relative motion of particles and fluid, the relative diffusive flux of 
particles and fluid is the same as if each particle were acted on by a modified 

(3.14) 

and the fluid molecules were force free, where F is given by (3.12) and # = nu 
is the volume fraction of the particles. When @ < 1 and only the first approxima- 
tion to the diffusive flux of particles is required, as in Einstein’s work, the effect of 
the diffusive driving force on the fluid molecules can be ignored. 

In  view of the simplicity and power of the result (3.14) (with (3.12)) for the 
particle force that gives the same flux as Brownian motion, it may be helpful 
to see it also as a consequence of the following argument from non-equilibrium 
statistical mechanics. Consider a large volume V of a suspension in which the 
pressure, temperature and particle number density are uniform with values p ,  
T ,  no. The minimum amount of work (corresponding to a reversible change) which 
must be done in order to change the number of particles in a part of this suspen- 
sion initially of volume T from m, to m, where (m-m,)/m, is small but finite, 
under conditions of constant pressure and temperature is 

where AG is the change in the Gibbs free energy of that part of the suspension (see 
Landau & Lifshitz 1968, $§98,117). By expanding AG in powers of m-m,, and 
remembering the definition (3.8), we see that the minimum total amount of work 
needed to bring about such changes in all parts of V is approximately 

force F F * = F 1 + -  =- ( GJ I - @  

AG- (m-m,)p(n,,p,T), 

with use of (3.9) ( N  being replaced there by m), where @, is the volume fraction 
of the particles in the uniform state. This quantity W is also equal to kT(X, - S), 
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where So is the total entropy of the uniform system and X that of the changed 
system. If we now allow the suspension to relax back to the equilibrium state by 
diffusion, with a local particle flux density f, the rate of change of W and 8, re- 
garded as parameters of the system at any instant, are given by 

(3.15) 

provided there is no particle flux across the boundary of V .  We expect - d Wldt 
to be equal to the rate of working in the suspension by the ‘dissipative’ driving 
force on particles representing the effect of diffusion, and we see that the right- 
hand side of (3.15) does indeed allow this interpretation if the driving force has 
the modified value (3.14). 

In  the case of a suspension which is so dilute that the particles do not interact, 
,u is approximately equal to const. + kT log n, and n(x) and P(x) are proportional, 
so that we recover (3.5) from (3.12). At larger particle concentrations this expres- 
sion for ,u must be supplemented by a ‘virial’ expansion in powers of nv ( =  4, 
the volume fraction of the particles), the form of which is known for hard spheres 
and will be described later. This virial expansion for ,u represents the dependence 
on n of the part of the suspension volume that is free or accessible to particles; 
the larger is n, the smaller is the space available for the introduction of more 
particles, and napIan is an increasing function of n. 

In  more general circumstances there may be s different species of particle 
in an inhomogeneous suspension. For each species i, with properties given by pi, 
n,, vi, (6, (where pi depends on nl, n2, . . . , and not on ni alone) we introduce an 
external force with potential energy cD,(x) per particle. The chemical potential 
per particle of species i is then pi + @,, and since this must be uniform in the result- 
ing equilibrium system we see that the effective or thermodynamic force on a 
particle of this species is - Vpi. This will also represent the effect of diffusion in 
a non-equilibrium system; and when such a system is free from external forces 
p and T are uniform, in which case the diffusive driving force acting on each 
particle of species i is 

There is a corresponding thermodynamic force 

(3.16) 

(3.17) 

on each fluid molecule, and so the relative diffusion of particles and fluid is the 
same as if each particle of species i were acted on by the modified force 

(3.18) 

and the fluid molecuIes were force free, where $ = 1 - novo and Fi is given by 
(3.16). 
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We remark finally that there is no neglect, here or elsewhere in the paper, of the 
effect of Brownian couples on the translational diffusion of particles. It is true 
that, through hydrodynamic interaction, rotation of one particle does cause 
translational displacement of a neighbouring particle, but there is no need to take 
explicit account of Brownian couples. All such effects are incorporated implicitly 
in the above expressions for the steady thermodynamic force on particles that 
gives the same translational flux as the diffusion, provided that the particles 
moving under the action of the thermodynamic force are regarded as couple-free. 
And in the case of spherical particles there is of course no need to take account of 
the angular displacements. 

This completes the statistical mechanical part of the investigation. We have 
shown that in several different circumstances the diffusive flux due to Brownian 
motion can be identified with the flux due to the action of certain ‘thermo- 
dynamic’ forces applied to the particles. Determination of the flux which would 
be produced by these external forces is a multi-particle hydrodynamical problem 
which will now be considered. The thermodynamic driving forces are linear in the 
probability or concentration gradients, and so, bearing in mind the linearity of 
the hydrodynamical equations, we expect to be able to obtain expressions for the 
diffusion coefficients from the hydrodynamical investigations. 

4. The relevant hydrodynamic functions for two spherical particles 
The above description of diffusive flux indicates that we shall need to know how 

a particle moves, under the influence of an applied force, through fluid containing 
other moving particles. It is convenient to specify the relevant hydrodynamic 
functions here, for the particular case of two spherical particles, as a preliminary 
to their use in the discussion of Brownian diffusion in subsequent sections of this 
paper. 

Suppose that a sphere of radius a, with centre at x, acted on by an external 
force F, and a sphere of radius a2 with centre at  x, acted on by an external force 
F, are otherwise alone in fluid which is a t  rest at infinity. There is zero applied 
couple on each sphere. We wish to find the instantaneous velocities of the two 
sphere centres, U, and U,. Provided the inertia forces on both fluid and spheres 
are negligible we have the linear relations 

where the mobility tensors bll, etc., are inversely proportional to the fluid visco- 
sity 7 and also depend on the geometry of the two spheres, that is, on r = x2 - x,. 
Since the sphere configuration is symmetrical about the direction of r we may 

U, = b,, . F, + biz. F,, U, = b,, . F,+ b22. F,, (4.1) 

write 

( i , j  = 1 or 2; no summation convention here) where r = Irl . The non-dimensional 
coefficients Aij  and Bij depend on r,  a,, and a2, and will be given here as functions 
of the two non-dimensional variables 

(4.3) 
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By comparing the two flow systems obtained by choosing F, = F, F, = 0 and 
F, = 0, F, = F, we find 

A,l(P, 4 = A,*(P, A-1), A )  = B,,(P, (4.4) 

and A,,(P, 4 = A,,(p, A-1), B,,(P, = B,,(p, 
Also, the reciprocal theorem of Lorentz (1906) tells us that A,, and A,,, and B,, 
and B,,, are identical functions. Hence 

(4.5) I &(P, 4 = A&> 4 = A,,(p, 
B,,(P, 4 = B,,(P, 4 = B,,(p, 

= A&, A-1), 
= B,,(p, A-1)* 

This reduces the enquiry to a consideration of the functions of A,,(p,h), 
B,,(p, A )  over the range 0 < h < co and the functions A,,@, A ) ,  B&, A )  over 
the range 1 < h < a, with 2 < p < co in all four cases. The choice of non-dimen- 
sionalizing factors made in (4.2) ensures that these functions are finite a t  all values 
of A. 

Asymptotic forms for p > 1 can be worked out by simple methods, and it will 
be worthwhile to give them here- for the case of rigid spheres - so that we shall 
know whether certain integrals which arise later are convergent. Consider a case 
for which F, = F, F, = 0. Whenp > 1 the velocity of sphere 1 is approximately 
that of an isolated sphere, viz. P/bn~a,. The error is due to the fact that the move- 
ment of sphere 1 generates in the surrounding fluid a velocity gradient which is of 
order r-, a t  distance r and this velocity gradient makes sphere 2 act as a force 
dipole which then generates a velocity of order r-4 at the position of sphere 1. 
The velocity a t  position r in the fluid relative to the centre of sphere 1 when it 
moves in isolation is 

u ( r ) = U o .  ( I (30, -+- 4) +- rr(3a1 M)] , r > a l ,  
4r 4r3 4r 4r3 

where Uo = F/6n7a1, and the corresponding rate-of-strain tensor is 

e(r) = -l :;3 ( I--- 3r3 r-uo 

to leading order; and then the resulting additional velocity of sphere 1 due to 
the induced-dipole action of sphere 2 is found by familiar relations (see Batchelor 
& Green 1972a) to be asymptotically 

Thus the asymptotic forms of A ,  and B,, are 

the magnitude of the error terms being evident from a qualitative extension of 
the argument. 

Now consider the velocity of the force-free sphere 2. The ‘environment’ 
velocity at  the position of sphere 2 is that due to the sphere 1 regarded as moving 
in isolation, so by Faxen’s theorem (see Batchelor 1972) the velocity of sphere 2 
is approximately u(r) ++aiVu(r), 
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(iii) U=(B,,+Bl,)F (iv) U= (Bll - B1JF 

FIG- 1. Four particular flow fields involving two equal couple-free spheres moving 
under the action of applied forces of equal magnitude F through fluid at rest a t  infinity. 
The arrows show the directions of both the applied forces and the velocities of the sphere 
centres. Determination of the sphere speed U in each case gives the value of the quantity 
shown in brackets (see (4.1) and (4.2)). 

where u(r) is given by (4.6). Hence 

and since the presence of sphere 2 gives sphere 1 an additional dipole strength 
of order r--5 the error in this expression for U, is of order r7. It follows that 

Several authors have given series of this kind, usually for the resistance tensors 
(the inverses of the mobility tensors), but I do not know of any which improve on 
the results (4.7) and (4.8) for arbitrary values of A. 

Many particular problems of low-Reynolds-number flow due to two moving 
spheres have been investigated and described in the literature, and by appropriate 
interpretation of the available data it is possible with some trouble to assemble 
a fairly complete numerical description of the two-sphere functions All, A12, BI1, 
Bl,. I give here the fruits of a search of the literature only for the important case 
of two rigid spheres of the same size ( A  = 1). Figure 1 shows four particular con- 
figurations of the spheres and applied forces of equal magnitude, and derivation 
of the velocities of the spheres in each case provides a value of a certain linear 
combination of the four functions for each value of the distance between the 
spheres. 
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p ( = : )  

2.0 
2.01 
2.05 
2.10 
2-25 
2.50 
2.75 
3.0 
3.5 
4.0 
5.0 
7-0 
00 

All+Al2 

(Cooley & O’Neill) 

1.5500 
1-5487 
1.5431 
1.5363 
1.5167 
1.4861 
1.4580 
1.4320 
1.3861 
1.3472 
1.2866 
1.2100 

All - A12 

(O’Neill) 

0 
0.0187 
0.0787 
0.1349 
0-2478 
0.3607 
0.4352 
0.4905 
0.5702 
0.6263 
0.7021 
0.7871 

All, A12 

0.7750 
0.7837 
0.8109 
0.8356 
0.8823 
0.9234 
0.9466 
0.9613 
0.9782 
0.9868 
0.9944 
0.9986 
1.0 

0.7750 
0.7650 
0,7322 
0.7007 
0.6345 
0.5627 
0.5114 
0.4708 
0.4080 
0.3605 
0-2923 
0.2115 
0 

TABLE 1. Values of the scalar mobility functions for forces parallel to the line of centres 
and two equal-sized rigid spheres ( A  = 1). C(p) = A,, - A,, when h = 1 

P (= ‘a) B,l+Bl2 B11- Bl, B,,, B22 B12, B,, 

Nir & Acrivos 2.0 1.381 0.401 0.891 0.490 

O’Neill & 2.001 1.4004 0.4670 0.9337 0.4667 
Majumdar 2.005 1.4027 0.4834 0.9431 0.4597 

2.01 1-4032 0.4935 0.9484 0.4549 
2.1 1-3918 0.5564 0-9741 0.4177 
3.0 1.2668 0.7297 0.9983 0.2686 
7.0 1.1086 0.8913 1.000 0.1087 
00 1.0 0 

TABLE 2. Values of the scalar mobility functions for forces normal to the line of 
centres and two equal-sized rigid spheres ( A  = 1). H ( p )  = B,, - B,, when h = 1 

Problem (i) has been solved exactly by Stimson & Jeffery (1926) in terms of 
bispherical coordinates, and the resulting values of All+& have been com- 
puted by Cooley & O’Neill (1969a-see their table 2) and are reproduced in 
table 1. (In common with many other authors, Cooley & O’Neill state their 
results in terms of resistance coefficients for the two spheres, but for the par- 
ticular configurations sketched in figure 1 the mobility coefficients are simply 
reciprocals of the resistance coefficients.) Brenner (1961) has given a formula 
for the sphere velocities in problem (ii), and the results of computations of this 
formula for several values of h have been given (see Cooley & O’Neill 19693). 
Strangely the published data does not include the case h = I, but Dr O’Neill has 
kindly extended his calculation to this case and provided me with the values of 
Al1-A,, shown in table 1. The table also shows the corresponding values of 
A,, and A,, obtained from these two sets of data. 

The more difficult problem (iii) in which the couple-free spheres rotate with an 
angular velocity proportional to P has been investigated by Goldman, Cox & 
Brenner (1966) with the aid of bispherical coordinates, and their computed 
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" 
2.0 2.5 3.0 3.5 4.0 

P(' 4.) 
FIGURE 2. The scalar mobility functions (defined in (4.1) and (4.2)) 

for two rigid spheres of equal radii ( A  = 1). 

values of B,, + B,, are given in their table 11 A under the heading 8 = 0. (Thk 
same table also gives values of A,,+A,,, under the heading 8 = 90'' for the 
same set of values of r/a, recomputed from the Stimson & Jeffrey solution.) 
O'Neill & Majumdar (1970) have made a similar but more general investigation 
of the flow due to two spheres moving under the action of applied forces normal to 
the line of centres, and by combining appropriately the functions given in their 
table 1 it  is possible to calculate values of both B,, + B,, and B,, - B,,. These are 
shown in table 2 ,  together with the corresponding values of B,, and B,,. The 
functions B,, and B,, are known to vary rapidly when log (p - 2)-l $ 1, probably 
with behaviour like 

const. 
const. + 

log (p  - 2)-1 

(whereas A,, and A,,, are regular), and the exact solutions used by Goldman et al. 
(1966) and by O'Neill & Majumdar (1970) are not convenient for determination 
of the values of B,, and B,, very near the end point p = 2. However, Nir & 
Acrivos (1973) have recently given a different exact solution for the flow due to 
two touching spheres on which a given external force and couple act, and by 
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recasting the data in the appendix to their paper we obtain the values of B,, and 
B,, shown in table 2 in the row labelled p = 2.0. 

All, A,,, B,, and B,, are also shown as functions of p in figure 2 for this case 
h = 1. 

5. Relative diffusion of two particles in a dilute homogeneous suspen- 
sion 

In  the case of a statistically homogeneous suspension of particles which is 
being deformed, a non-uniform probability distribution of the relative positions 
of particles may be produced by the bulk flow. The effect of Brownian motion of 
the particles is then to tend to restore the uniformity. Since the rheological 
properties of the suspension depend on the statistics of the relative positions of 
particles, it  is desirable to have detailed information about this relative diffusion 
of particles due to Brownian motion. 

When the suspension is dilute, the chance of a particle having m neighbours 
within a few diameters a t  any instant is of order q5m, where q5( < 1) is the volume 
fraction of the particles, and in rheological calculations which are correct only 
to  within a certain order in 4 it  is normally sufficient to consider finite groups of 
neighbouring interacting particles. We shall consider here the relative diffusion 
of an effectively isolated pair of sphericalparticleswith a given vector separation, 
this being the case that is of interest in current investigations of the stress system 
in a dilute homogeneous suspension correct to the order 9, (Batchelor & Green 
1972 b). For a homogeneous suspension the joint probability density function of 
the positions of a sphere of type one of radius a, and of a sphere of type two of 
radius a, is of the form 

where r = x2 - x, and n,, n2 are the (uniform) number densities of the two types 
of sphere. The pair-distribution function p(r) will satisfy the condition 

p(r)+ 1 as r-+m 

in the absence of long-range order in the suspension. 
According to the results of $3,  the relative diffusive flux due to Brownian 

motion is the same as if spheres one and two moved under the action of steady 
applied forces F, and F, respectively, where, in view of (3.7), 

P(X1, x,) = n,n223(r), (5.1) 

Now when two couple-free spheres are acted on by external forces F, and F, in 
fluid which is at  rest a t  infinity, they acquire velocities U, and U, given by (4.1). 
The diffusive flux of sphere 2 relative to Bphere 1 is then 

and we may define the relative diffusivity of two spheres with separation vector r 
as 

(U, -U,) P(X1, Xa) = - kT(b,,+ b2,- b12 - b2l). V(n,n227), 

D(r) = kT(b,, + bZ2 - b,, - bzl). 

(5.3) 

(5.4) 
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1 I I I 

0 s  - 

0.7 - 

0.4 - 

I I I 
2.0 2.5 3.0 3.5 4.0 

p ( =  r l 4  
FIGURE 3. The scalar relative-diffusion functions (defined in (6.5) and (5.7)) 

for two rigid spheres of equal radii ( A  = 1). 

This is the diffusivity that is needed in an investigation of the pair-distribution 
function in a dilute homogeneous suspension of spheres subjected to a bulk 
deforming motion. 

On substituting the expressions for the mobility tensors given in (4.2) we find 

(5.5) 
rr 

where 

and p = 2r/(a,+a2), h = a2/al. We note from the inversion relations (4.4) and 

When the two spheres are far apart they move independently, corresponding to 

G e l ,  H + l  and D+D0I 

asp -+ 00. The asymptotic developments of G and H as p -+ 00 can be found from 
(4.7) and (4.8) correct to the order of P - ~ .  

(4.5) that ‘ (p ,  ’1 = ‘ (p ,  H ( p ,  ’) = H ( p J  (5.8) 

2 F L M  74 
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For two spheres of equal radii ( A  = l), (5.7) reduces to 

G(P) = A,*--A,Z> H(P) = B,,-B12, (5.91 
and the numerical values of G and H for this case have already been given in 
tables 1 and 2 respectively. These values of G and H are also shown in figure 3. 

Deutch & Oppenheim (1971) also define a relative diffusion tensor for two 
(equal) spheres with vector separation r, and derive an expression for it from the 
(coupled) equations of motion of two particles acted on by random thermal forces. 
Their expression is consistent with (5.4). For the functions G ( r )  and H ( r )  they 
give only the asymptotic forms correct to the order of a/r when a/r < 1. Murphy 
& Aguirre (1972, 1973) did not consider relative diffusion of particles. 

Similar arguments may be applicable to the relative diffusion of three or more 
particles in a suspension, but determination of the hydrodynamic functions 
occurring in the expressions for the mobility of one particle in the presence of two 
other particles would be a formidable task. 

6. Diffusion of identical particles down a concentration gradient 
We consider here the diffusion of identical spherical particles down a concentra- 

tion gradient, the more general case of simultaneous diffusion of several different 
kinds of particle being left for 3 7, As before we denote the mean number density 
of particles by n and the corresponding volume fraction of the particles by 
$( = nv, where v is the volume of a particle), both of which are functions of position 
x. The starting point for the hydrodynamic problem is the result of $ 3  that the 
local diffusive flux is the same as that produced by the application of a steady 
force F* to each particle and zero force on the fluid, where 

and ,u is the local chemical potential per particle. 
In  order to be able to make any progress with the calculation of the flux 

produced by forces applied to all the particles, we shall need to restrict attention 
to the case of a concentration gradient for which L I V log n I is small and approxi- 
mately constant over a volume of the suspension with linear dimensions L which 
contains a large number of particles ( N  say). The point of this restriction, which 
is common in calculations of diffusivities, is that the thermodynamic driving 
force is then approximately the same for all the particles in a large volume of the 
suspension. The flux of particles is now the same as that in a suspension of identi- 
cal particles which are falling out under gravity, the force F* given by (6.1) being 
identified with (p -po) vg, where p is the density of the sedimenting particles and 
po that of the suspending fluid. Moreover since n is approximately constant over 
the suspension containing the diffusing particles, the suspension containing the 
sedimenting particles can be regarded as homogeneous. 

In  this sense the diffusion of identical particles down a concentration gradient 
is related to the problem of sedimentation of a homogeneous suspension of par- 
ticles. A connection of some kind has been surmised in the literature for many 
years; see for instance Sadron (1953). 
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The velocities of the N particles in the suspension moving under the action of 
identical steady forces will not all be the same and will depend on the geometrical 
configuration represented by the instantaneous particle position vectors xl, 
xg, . . ., x,. We are interested in the particle velocity averaged over a large number 
of particles, or, equivalently, in the velocity of a particle acted on by a steady 
force F* averaged over all positions of the surrounding particles, each of which is 
acted on by the same steady force. Let ( U )  denote this average particle velocity, 
relative to the chosen frame of reference. There is need for a careful specification of 
the appropriate reference velocity, because there is no general meaning to the 
term ‘velocity of a particle relative to the surrounding fluid’ when particles are 
close enough to interact hydrodynamically. The significant reference velocity 
in an incompressible two-phase medium in which the two phases have different 
velocities is the average velocity at a point, regardless of whether it is embedded 
in solid or in fluid material, to be denoted by (u). The required average particle 
velocity, relative to axes such that there is zero average flux of material volume, 
is therefore ( U )  - (u). This is of course the average particle velocity relative to 
the walls of a vessel containing a statistically homogeneous suspension. One 
could also describe (U) - {u) as the average velocity of particles relative to the 
velocity that they would have if they were acted on by zero force. 

The average particle velocity relative to zero-volume-flux axes is necessarily 
a linear function of the uniform force that acts on the particles, so we have 

where a is a length characteristic of the particles and the mobility coefficient K 
is a tensor function of particle shape and concentration and the statistical 
properties of the configuration of the particles. When the particles are spheres 
and the particle configuration is isotropic, the average velocity of particles is 
in the same direction as the applied force and 

K($) = K($)  1. (6.3) 

For the Brownian motion problem, in which the uniform force F* has the value 
(6.1), we now have 

particle flux density = n { ( U )  - (u)} 

The diffusivity representing the effect of Brownian motion is thus given as a 

Values of the coefficient K($)  are provided in principle by theory or observation 
concerning sedimentation of the particles. However we must remember that a 
requirement for identity of the two problems is that the probability distribution 
of relative particle positions should be the same in the two problems and hence 
that there should be uniform probability of all accessible sphere configurations in 

2-2 
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the sedimentation problem. Whether a real suspension of sedimenting spheres has 
this property is not known. The other undetermined quantity on the right-hand 
side of (6.5) is a,u/aq5, which may be obtained from observations or calculations of 
the chemical potential of the particles in a stationary suspension in equilibrium. 

No restrictions on the concentration of the particles have been made in the 
argument leading to (6.5). If now we assume that q5 < 1 we can take the calcula- 
tion further. Both q5 a,u/aq5 and K(q5) are unity in the limit q5 -f 0, and the depar- 
tures from unity can be expressed as series in integral powers of q5 for sufficiently 
small values of $. In  both series terms of order #m represent the effect of inter- 
actions between groups of m + 1 particles, the interactions being by interparticle 
force in the case of q5ap/aq5 and by hydrodynamic influence in the case of K($) .  
We consider each series in turn. 

According to the statistical mechanical theory of dilute (non-electrolyte) 
solutions (described by Hill 1960, chap. 19, and Landau & Lifshitz 1968, chap. 9) 
the Gibbs free energy of volume V of a solution containing N identical particles 
each of volume v and No solvent molecules of volume vo may be written as 

G = No Go@, T) + NG,(p, T) - k T  log ( VNQN/vNN !) 
= NOGO + N(G, + k T  log $/e)  - k T  log Q N .  (6.6) 

Here N has been assumed to be so large that Stirling’s formula may be used, Go 
is the free energy per molecule of solvent in the pure state, and N(G, + k T  log $/e) 
represents the effect of interaction of the solvent with independent and identical 
particles. The effect of interaction between particles is represented by - k T  log Q N ,  

where Q N  is the so-called configuration integral, or configurational partition 

where U(x,, . . . , xN)  is the potential energy of interaction between the N particles 
at positions x,, . . . , xN in the volume V .  The last two terms of (6.6) have the same 
form as for a volume V of a gas containing N molecules essentially because when 
the particle positions are given there is only one way of distributing the (identical) 
solvent molecules to fill up the remaining space in V .  When N is large QN may be 
expanded (Fisher 1964, chap. 2) in the form 

where the coefficient Pi depends on the interaction of a group of j particles. The 
series for the chemical potential of the particles is then obtained by differentiation 
(remembering that q5 = Nv/(Novo+Nv)): 

m 

,u = (%) = G1+kT(logq5-q5)-kT j=1 C Pj(q5j-J+l@+1). (6.8) 
aN N o , m  T 

The corresponding series for the chemical potential per molecule of solvent is 

,uo = (s) = Go+kT% -$+ C “ j  -Pj@+1), 
aNO N, p ,  T V j=13 + 1 

which may be shown to agree, at least as far as the term of order $2, with the 
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series in powers of NIX, given by Hill ( 1960,s 19.3 - not $19.1, which is concerned 
with the dependence of ,u on $ under conditions of constant po) .  

Hence from (6.8) we have 

In  the case of hard spheres the exponential factor in (6.7) vanishes for values of 
xl, . . ., X, such that any two spheres overlap and is unity otherwise, and QN is 
independent of pressure and temperature. The standard method of evaluating 
the multiple integral gives for this case 

- 8, pz = - 15. (6.10) 

(The first of these results is evident from the fact that the fraction of V that is 
accessible to a particle when there are already m particles in V is approximately 
1 - (Smv/V), whence QSN is equal t o  1 - 4$ to the first order in q5.) The effect of 
interparticle forces, which in this case of hard spheres is simply an excluded 
volume effect, is to increase the diffusivity relative to its value for $ = 0,  as we 
see from the negative sign of pl, essentially because there are more free sites 
available for a migrating particle in a region where the particle number density 
is lower. 

The available theoretical result for the sedimentation velocity in a dilute 
suspension (Batchelor 1972) is that for rigid spherical particles, and uniform 
probability of all accessible sphere configurations (which is the pair distribution 
that is relevant to the problem of Brownian diffusion), 

K($)  = 1 - 6.554, +O($2). (6.11) 

The negative sign of the term linear in $, corresponding to a decrease in the 
settling rate, is due mainly to the return flow that balances the ‘downward’ 
volume flux of the particles and the fluid dragged with them. The derivation of 
this result is not straight forward, because a simple summation of the changes 
in the velocity of a particle due to hydrodynamic painvise interaction with each 
one of the other particles in the suspension yields a non-convergent integral. 
The argument needed to overcome this difficulty is described in the appendix 
in preparation for the generalization made in the next section. 

Onputtingtogethertheresults (6.5), (6.9) and (6.11) wefindthatthediffusivity 
due to Brownian motion in a dilute suspension of rigid spheres is 

(6.12) 

correct to the order of $. It appears that the enhancement of the diffusivity due to 
the greater availability of particle sites in regions of lower concentration is a little 
greater than the reduction due to hydrodynamic hindrance to the movement of 
particles. 

There does not appear to be any previous theoretical work with which the above 
results can be compared. Deutch & Oppenheim (1971) did not consider gradient 
diffusion of particles. Murphy & Aguirre (1972, 1973) did consider gradient dif- 
fusion, and attempted to find the approximate value of the diffusivity that takes 
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account of pairwise hydrodynamic interactions but were blocked by the non- 
convergent integrals that turn up except in the case of diffusion of ‘tracer’ 
particles surrounded by other particles with larger number density (see the 
footnote to the next section). The excluded volume effect that gives rise to the 
series in (6.9) and which makes the effective driving force on particles different 
from - V log n is absent from Murphy & Aguirre’s analysis; and it is difficult to 
see, how, even in principle, it  should be included in a consideration of the 
dynamical equations for the random motion of particular particles. 

So far as I am aware, observations of the diffusivity of colloidal particles 
have not led to an agreed empirical formula for the dependence on concentra- 
tion for particles which might be expected to behave as hard spheres. 

7. Simultaneous Brownian diffusion of different species of particle 
in a dilute suspension 

Situations in which two or more kinds of particle are each diffusing down a 
concentration gradient in the same body of fluid are not uncommon in physical 
chemistry and colloid science, and are possibly of more practical interest than the 
corresponding problem of sedimentation of a mixture of different kinds of par- 
ticle. When interactions are taken into account the driving forces and motions of 
different types of particle are coupled, and expressions for the diffusivities which 
are generalizations of (6.5) become rather cumbersome. In  this section we shall 
derive the approximate formulae corresponding to (6.12) for diffusivities of 
several different sizes of particle in a dilute suspension. 

The different types of particle, all of which are rigid spheres, will be dis- 
tinguished by the suffix i, and the defining properties of particles of type i are 
the radius ai (or volume vi) and the number density ni. The number density of 
each type of particle will be assumed to vary by only a small fraction over a 
volume V containing many particles, and although in practice the gradient vec- 
tors Vni will often be parallel there is no additional difficulty in allowing for 
different directions. The modified force F: that acts on each particle of type i is 
then given by equation (3.18). We shall assume that the total volume fraction 
of the particles 4 ( = C Qi) is small, and seek expressions for the fluxes of the 

different kinds of particle which take account of pair interactions only. 
The first step is to calculate the driving force Fi from (3.16) approximately, and 

and for this we need a virial expansion corresponding to (6.9) for a mixture of 
particles. For a suspension cont,aining N particles, of which Ni are identical par- 
ticles of type i, the appropriate expression for the free energy, in place of (6.6), 

i 

= No Go + 7’ Ni(Gi + IcT log Q i / e )  - IcT log Q N ,  (7.1) 7 
and the configuration integral QN is again given by (6.7). When differentiating G 
with respect to Ni it  must be remembered that, q5i = Nivi/V and V = Novo + Ni vi. 

i 
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The change in the value of log QN due to an increase in the number of particles of 
type i by one may be seen (by carrying out the integration with respect to the 
position of this additional particle before the other N integrations in (6.7)) to be 

-y & - + 1  )3 q5j 

correct to the order of the first power of the small quantities 
cal potential per particle of type i is thus 

&, . . . . The chemi- 

= Gi++IcT(logq5i-nvi)+kT~ (7.2) 
j 

approximately, where n = C ni. Then on substituting in (3.16) and (3.18) we find 

with consistent approximation that 
i 

F: = -kTVlogni-kTv.y .-( l + J  :I3 Vnj.  (7-3) 
i 

The second step is to calculate the mean velocity of particles of type i relative 
to axes such that there is zero mean flux of material volume in the suspension, 
given that particles of type j are acted on by the external force FT. This mean 
velocity (UJ - (u) must be evaluated by means of relations like those given in 
the appendix for a suspension of identical particles. The required generalization 
is evident in most places, although it is necessary to make the notation a little 
more elaborate in order to keep track of the properties of the different types of 
particle involved in an interaction. 

Corresponding to (A 5) there is the exact expression for the mean velocity of a 
partide of type i with centre at  x: 

(U,>-(U) = Uio-{u)+({V,(Y,x) +&eVpi(Y,x)},=,) 
a2 

- $ a ~ ( V z u ) f f f - ~  ~ n n i ( R j ) + ( W i ) ,  (7.4) 

with notation which will be obvious. This is in a suitable form for the approxi- 
mate evahation of the averages as integrals over the position of just one sphere 
in the neighbourhood of the point x. This one sphere may be of any type, and on 
summing over the different types, each with its own probability density, we find, 
corresponding to  (A 7), that 

67 j 

(Ui) - (u) = uio - C (1  - 4:) q5j ujo 
j 

- T {u(xIx’,aj) +Qa9V~u(xlx‘,aj)){P(x’,ni)--(x’, ajlx,ai))dx‘ 

+ 2 W(x, a,lx’, ai)P(x’, aj]x, ai) dx’ (7.5) 

‘j‘ raaj 

j S 
correct to order q5; here the combination x, ai indicates that there is a sphere of 
radius a, at x and similarly for x’, ai. 

Again we may assume, to a consistent approximation, that all realizable con- 
figurations of pairs of spheres are equally probable, in which case 

P(x’, ajlx, ai) = ni for r 3 ai+aj and 0 otherwise. 
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For the velocity u(xIx', ai) a t  point x due to the presence of a sphere of radius uj 
at x' we may again use the expression (4 .6) ,  with x' - x and uj replacing r and u 
there, and the first integral in (7.8) is then found to be equal to 

The function W(x, a,lx', aj)  can be expressed in terms of two-sphere mobility 
functions by rewriting (A9), the two spheres now being of different radii, and 
the final approximate formula, corresponding to (A l o ) ,  is 

and p = 2r / (a1+aZ) ,  h = az/a1 = ail.,. We note from (4.7) and (4 .8)  that when 
p % 1  

60h3 
(3  - A,l(P> - 2Bll(P, 4 ) P 2  = p-2 + 0(P-4),  

3 ( p  -A,,fp, 4 - 2B,,(p, 4 ) P 2  = 0(P-5>,  

which shows that the integrals in (7.7) are convergent. 

follows from (7.3) and (7.6) (recall that Uio = Ft/677yai) as 
The flux of number of spheres of type i relative to zero-volume-flux axes then 

ni((U,)-(u)) = - D ,  { 1 -  c$4i ( l 3  - C(h))V% 

- Dio#i {A3 + 2h2 - $( 1 + h)'D(h)) Vmj, (7 .8)  
i 

where Dio = ET/6nyai is the scalar diffusion coefficient for isolated particles of 
type i and h = a&,. This expression for the flux of i-type particles may also be 
written as 

- C D, . Pni. 
j 

The diagonal element of the diffusivity matrix is 

in which we have used the result C( 1) + D( 1) = 1.55, and the off-diagonal element 
is 

Dij = D, #.j{h3 + 2h2 - a( 1 + h)'D(h)} I. (7.10) 
( i i i )  
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The off-diagonal contribution to the flux of particles of type i due to a gradient of 
concentration of particles of type j is essentially a consequence of (a)  the move- 
ment of i-type particles to regions of lowerj-type concentration where more sites 
are available and (b )  the back-flow in the medium which is needed to compensate 
for the volume flux associated with the movement ofj-type particles down their 
concentration gradient. The flux of number of spheres of all types, obtained by 
summing (7.8) over all values of i, may readily be seen to be consistent with 
(6.12) when all the spheres are of the same size. 

Since the rate of increase of entropy per unit volume of the medium is propor- 
tional to the product of Ft and the flux of number of i-type particles, summed 
over all values of i, the Onsager relations (or the princple of symmetry of kinetic 
coefficients) demand that the coefficient of F; in (7.6), the relevant part of which 
is 

a;{l +3h-1+h-2+$(l +h-l)zD(h)}, 

be unchanged when a, and h are replaced by ai and A-l. The inversion relations for 
the functions A,, and B,, given in (4.5) show that D(h) = D(h-l) so that this is 
indeed so. 

The values of the integrals C(h)  and D(h) defined by (7.7) have been calculated 
for h = 1 from the data given in tables 1 and 2, the accuracy of the numerical 
integration being increased in the case of C(1) by first subtracting from the 
integrand its asymptotic form as given by (4.7). The results are 

C(1) = 1.83, D(1) = - 0.28. 

The second decimal place is unreliable as a consequence of values of both B,, and 
B,, being available for only a few values of p .  

Several interesting special cases may be recovered from the general formulae 
(7.9) and (7.10), one of which will be mentioned in view of its relevance to many 
experimental systems. If we put 

i = 1, j = 2, $1 < $2, 

in (7.9) and (7.10), we find that the flux of ‘tracer’ particles of radius a, in a 
suspension which contains many more particles of radius a2 per unit volume (while 
remaining dilute) is obtained from the diffusivities 

D,, M ID { 1 - $, ( g)3 C(A)), D,, w 0. 

And if a2 = a,, the factor within braces becomes (1 - 1.83$,). The numerous par- 
ticles of type 2 are acting here solely as passive obstacles to the migration of 
particles of type 1, and the factor ( 1 - 1.83$,) represents the reduction in the rate 
of change of mean-square displacement of a particle of type I due to the presence 
of type 2 particles. No convergence difficulties arise in this special case of diffusion 
of tracer particles because there is no summation of induced velocities due to 
neighbouring particles acted on by an external force, and it is also made.simpler 
by the absence of excluded-volume effects; the expression for the diffusivity 
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D,, can consequently be obtained by straightforward methods, as Aguirre & 
Murphy (1973) have shown.? 

The origin of this work was a perceptive suggestion from Professor J.D. 
Goddard of the University of Michigan that the new techniques for handling 
apparently divergent interactions between particles might be useful in Brownian 
motion theory. I am grateful also to my colleague Dr E. J. Hinch for his valuable 
comments and advice, and to Mr J. R. Aldabe and Dr M. E. O’Neill for their help 
with the numerical data on the mobility functions. 

Appendix. An explicit formula for the sedimentation velocity in a 
dilute suspension of identical spheres 

Here we show how to determine the average particle velocity relative to zero- 
volume-flux axes (denoted above by (U)-(u)) correct to order q5 for a dilute 
homogeneous suspension of identical spheres on which the same force F* acts. 
The argument to be given is an abbreviated and improved form of that already 
published (Batchelor 1972). 

The quantity (U) is the velocity of a sphere with centre at, say, the point x 
averaged over all configurations relative t o  x of the other spheres in the suspen- 
sion. And (u) is the velocity at a point, again taken as x for convenience, averaged 
over all configurations of spheres relative to x regardless of whether x lies within 
fluid or within a sphere. In  the limit q5 + 0, a sphere is effectively alone in infinite 
fluid, (u) is the uniform velocity of the ambient fluid for the motion of this 
isolated sphere, and 

for rigid spheres of radius a. But, when there are hydrodynamic interactions 
between spheres, the environment in which the sphere at x has been placed is 
not one with uniform velocity and (Al)  needs correction. We introduce the 
‘environment’ velocity v(y, x) which may be defined precisely as the velocity 
at point y if the material of the sphere at x were suddenly converted to fluid of 
viscosity 7 without change of other spheres in the suspension, and use the well- 
known expression for the velocity of a sphere of radius a in a non-uniform 
environment (another use of Faxen’s theorem) to obtain 

(U) - (u) = u, + ({(v + ga2v;V)g=x + W(x)}) - (u). (A2) 

Here W(x) is a remainder term which arises from image systems, in the boundaries 
of all other spheres, of the forces exerted on the fluid at the surface of the sphere 

-f They concluded, on the basis of some lengthy algebra, that  convergence difficulties 
disappear only for spherical particles, but consideration of the asymptotic form of the 
hydrodynamic interaction of a tracer particle with a zero-force type 2 particle shows that 
the same is true for any shape of particle. And the number 2.625 (or 21/8) given in their 
equation (23) should be 15/8, this being what one obtains (for h = 1) instead of the accur- 
ate value 1-83 if only the asymptotic forms of A,, and B,, correct to  order are used 
in the evaluation of the integral in the expression (7.7) for C(1). 
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a t  x and which is of order u4/r4 when there is just one other sphere at  distance r 
from x. 

Now when q5 is small the probability of one sphere being found within a distance 
of several sphere radii from a given point (the distance within which particle 
interactions are significant) is of order q5, and the probability of two spheres 
being found simultaneously within this distance is of order q52. We therefore seek 
an approximation to (U) - (u), correct to the order of q5, by supposing that the 
values of U and u at point x are influenced by the presence of only one of the sur- 
rounding spheres, with centre at  x’. This leads to a representation of the averages 
in (A2) as integrals over the position of this one sphere at x’, with appropriate 
weighting of the different positions, whence the right-hand side becomes 

+ W(x I x’) P(x’1 x) dx’, (A 3) 
where the integration is over all values of x‘, P(x’) is the probability density of a 
sphere centre being at x‘, P(x‘Ix) is the corresponding probability density con- 
ditional on there being a sphere centre at  x, and the addition of Ix’ to the argu- 
ments of u(x), v(y, x) and W(x) shows explicitly the location of the one neigh- 
bowing sphere on which these functions depend. However, this is a meaningless 
approximation, because the first integral in (A 3) is not absolutely convergent; 
both u and v are of order u/Ix’-xI when lx’l is large, and although these large 
terms cancel trouble comes from the term V2u which is of order u3/1x‘ - xI3. The 
idea of expansion in powers of q5 is not necessarily invalid but (A3) is not a proper 
expression of the mean particle velocity correct to the order q5. 

A simple remedy is to modify the expression (AZ), without approximation, 
in such a way that an absolutely convergent integral is obtained when the 
averages are represented as integrals over the position of only one sphere of the 
configuration about x. This may be done by noting that, since the deviatoric part 
of the stress tensor, d say (d being equal to 2,u times the rate-of-strain tensor, in 
the fluid part of the medium), is a stationary random function in a statistically 
homogeneous suspension, we have 

where the superscripts (f) and (s) indicate that the average is taken over the fluid 
and solid parts of the medium respectively, n is the number density of spheres, 
and R is the resultant force on a sphere due to the deviatoric stress exerted by 
the fluid at the sphere surface. We now rewrite (AZ), without approximation, as 

u, + J [ - u (x I x’ ) P (x’ ) + {v( y, x I x’) + ga2v; v (y , x I x’)}, =x P(x’ I x)] dx‘ 

7(V2u)(f) = -(V.d)O = -n(R), (A 4) 

(U) - (u) = u, - (u) + ((v + ~U2v;v),=,) - *u2(V2u)(f) 

nu2 

67 
--(R)+(W), (A51 

which does have the desired form. 

convergent integrals, is then obtained from (A5) as 
A valid approximation, correct to the order q5 and involving only absolutely 

(U)-(u) = u,- u(xlx’)P(x‘)dx’+ [-u(xlx’)P(x’) La La 
+(v(y,xlx‘) +gu2v;v(y, xIx‘)~y=xP(x’Ix) -gu~V~u(x~x‘)P(x’)]dx’ 

+ &qW, + I w (xlx’) P ( X ”  x) dx‘, (A 6) 
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where r = Ix‘-xI and R has been approximated as 4nyaU0. Now the uncon- 
ditional probability density P(x’) is equal to n, whence the first integral in (A6) 
is equal to $Uo with a consistent approximation. In the second integral the func- 
tions u(y1x’) and v(y, xlx’) both represent the velocity at y due to the presence 
at x’ of a sphere on which the force F* acts (and were previously distinguished 
notationally to indicate that different probability weighting functions were 
required when averaging), so that (A 6) becomes 

(U)- (u) = U0-*$Uo-J {u(x[x’)+~a2v;u(x~x‘)>{P(x’)-P(x’~x))dx’ 
r>a 

+ W(xIx’)P(x’Ix) dx’. (A 7) 

We now consider the forms of the various functions appearing in (A 7). I n  the 
Brownian diffusion problem the effect of Brownian motion is to make equally 
probable all realizable relative configurations of a large number of neighbour- 
ing spheres, and although this does not imply that the pair distribution function 
is uniform it is evident - and well known in the theory of the liquid state - that  
the departure from uniformity (which arises from the fact that the volume from 
which the centres of other spheres in the suspension are excluded varies with the 
separation of the pair) vanishes with q5 and so is negligible for the present 
purpose. Hence 

P(x‘1x) = n for r 2 2a, 
= 0 for r c 2a. 

This form of the pair distribution function was also adopted in the sedimente- 
tion problem (Batchelor 1972). 

The fluid velocity u(x1x’) at position x due to an isolated sphere with centre at 
x‘ acted on by a force is given by (4.6), with x’-x replacing r there, and the 
value of the first integral in (AT) is thus found to be 6na3nU0, that is, &5Uo. 

It will be recalled that W(x1x’) is the additional velocity of a sphere at x due 
to  the presence of a second sphere at x’, on which the same force F* acts, minus 
{u(xlx’) ++a2Vzu(xlx’)}. The two-sphere mobility tensors defined by (4.1) may 
be used here to  express W as 

W(x[x’) = (b,,+b,,).F*-U0-u(x~x’)-~a2V~u(x~x’), (A 9) 

where F* = 6nyaU0. The dependence of the mobility tensors on the direction of 
x’ - x is given by (4.2), in which at = a, = a, and for u(x1x’) we have the explicit 
expression (4.6). The integration of W over all directions of x’ - x may be carried 
out, and the final expression for the average particle velocity is 

where 
(U> - (u> = Uo{l- $(G + c + D) + o($)>, (A 10) 

and p = r/a. The sum of these two integrals involves the combinations A,, +A, ,  
and B,, + B12, which have been calculated by Goldman et al. (1966) for a common 
set of values of r/a and are shown in their table 11 A under the headings 6’ = 90” 
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and 6 = 0" respectively as already mentioned. The numerical integration 
reported in the previous paper (Batchelor 1972) gave the result C + D = 1.55, 
from which the quoted result (6.11) follows after comparison of (6.2) and (A10). 

Reference should be made to the original publication for the hydrodynamical 
interpretation of the various contributions to the coefficient of q5 in the expression 
for (U) - (u). 

Note added in proof. My attention has just been drawn to some recent publi- 
cations in which the expression (6.5) for the diffusivity of identical particles with 
non-uniform concentration is regarded as being a direct consequence of argu- 
ments commonly used in non-equilibrium thermodynamics (see chap. 13 of 
Dynamic Light Scattering, by B. J. Berne & R. Pecora, Wiley 3976). So far as I 
can tell, the reasoning I have used in this paper is essentially equivalent. The 
result (6.5) will thus not be new for some physical chemists. It appears also that 
the particular result (6.12) for a dilute suspension of uncharged hard spheres has 
recently been found to agree well with diffusion data obtained for monodisperse 
DNA molecules by the new technique of intensity fluctuation spectroscopy by 
Newman, Swinney, Berkowitz & Day (Biochemistry, 13, 1974, 4832). 
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